A Geometric Covering Lemma and Nodal Sets of Eigenfunctions
نویسندگان
چکیده
The main purpose of this paper is two-fold. On one hand, we prove a sharper covering lemma in Euclidean space Rn for all n ≥ 2 (see Theorem 1.5). On the other hand, we apply this covering lemma to improve existing results for BMO and volume estimates of nodal sets for eigenfunctions u satisfying 4u + λu = 0 on n-dimensional Riemannian manifolds when λ is large (see Theorems 1.7, 1.8). We also improve the BMO estimates for the function q = |∇u|2 + λ n u2 (see Theorem 1.10). Our covering lemma sharpens substantially earlier results and is fairly close to the optimal one we can expect (Conjecture 1.6).
منابع مشابه
Covering Lemmas and an Application to Nodal Geometry on Riemannian Manifolds
The main part of this note is to show a general covering lemma in Rn, n 2 2 , with the aim to obtain the estimate for BMO norm and the volume of a nodal set of eigenfunctions on Riemannian manifolds. This article is a continuation of our previous work [L]. In [L] we proved a covering lemma in R2 and applied it to the BMO norm estimates for eigenfunctions on Riemannian surfaces. The principal pa...
متن کاملSome Geometric Aspects of Graphs and their Eigenfunctions
We study three mathematical notions, that of nodal regions for eigenfunctions of the Laplacian, that of covering theory, and that of fiber products, in the context of graph theory and spectral theory for graphs. We formulate analogous notions and theorems for graphs and their eigenpairs. These techniques suggest new ways of studying problems related to spectral theory of graphs. We also perform...
متن کاملOn the determination of asymptotic formula of the nodal points for the Sturm-Liouville equation with one turning point
In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.
متن کاملThe numerical values of the nodal points for the Sturm-Liouville equation with one turning point
An inverse nodal problem has first been studied for the Sturm-Liouville equation with one turning point. The asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated and an asymptotic of the nodal points is obtained. For this problem, we give a reconstruction formula for the potential function. Furthermore, numerical examples have been established a...
متن کاملThe uniqueness theorem for inverse nodal problems with a chemical potential
In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.
متن کامل