A Geometric Covering Lemma and Nodal Sets of Eigenfunctions

نویسندگان

  • Xiaolong Han
  • Guozhen Lu
  • XIAOLONG HAN
  • GUOZHEN LU
چکیده

The main purpose of this paper is two-fold. On one hand, we prove a sharper covering lemma in Euclidean space Rn for all n ≥ 2 (see Theorem 1.5). On the other hand, we apply this covering lemma to improve existing results for BMO and volume estimates of nodal sets for eigenfunctions u satisfying 4u + λu = 0 on n-dimensional Riemannian manifolds when λ is large (see Theorems 1.7, 1.8). We also improve the BMO estimates for the function q = |∇u|2 + λ n u2 (see Theorem 1.10). Our covering lemma sharpens substantially earlier results and is fairly close to the optimal one we can expect (Conjecture 1.6).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering Lemmas and an Application to Nodal Geometry on Riemannian Manifolds

The main part of this note is to show a general covering lemma in Rn, n 2 2 , with the aim to obtain the estimate for BMO norm and the volume of a nodal set of eigenfunctions on Riemannian manifolds. This article is a continuation of our previous work [L]. In [L] we proved a covering lemma in R2 and applied it to the BMO norm estimates for eigenfunctions on Riemannian surfaces. The principal pa...

متن کامل

Some Geometric Aspects of Graphs and their Eigenfunctions

We study three mathematical notions, that of nodal regions for eigenfunctions of the Laplacian, that of covering theory, and that of fiber products, in the context of graph theory and spectral theory for graphs. We formulate analogous notions and theorems for graphs and their eigenpairs. These techniques suggest new ways of studying problems related to spectral theory of graphs. We also perform...

متن کامل

On the determination of asymptotic formula of the nodal points for the Sturm-Liouville equation with one turning point

In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.

متن کامل

The numerical values of the nodal points for the Sturm-Liouville equation with one turning point

An inverse nodal problem has first been studied for the Sturm-Liouville equation with one turning point. The asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated and an asymptotic of the nodal points is obtained. For this problem, we give a reconstruction formula for the potential function. Furthermore, numerical examples have been established a...

متن کامل

The uniqueness theorem for inverse nodal problems with a chemical potential

In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011